Hopf Bifurcation Control of Subsynchronous Resonance Utilizing UPFC

Author:

Alomari Μ. Μ.,Widyan M. S.,Abdul-Niby M.,Gheitasi A.

Abstract

The use of a unified power flow controller (UPFC) to control the bifurcations of a subsynchronous resonance (SSR) in a multi-machine power system is introduced in this study. UPFC is one of the flexible AC transmission systems (FACTS) where a voltage source converter (VSC) is used based on gate-turn-off (GTO) thyristor valve technology. Furthermore, UPFC can be used as a stabilizer by means of a power system stabilizer (PSS). The considered system is a modified version of the second system of the IEEE second benchmark model of subsynchronous resonance where the UPFC is added to its transmission line. The dynamic effects of the machine components on SSR are considered. Time domain simulations based on the complete nonlinear dynamical mathematical model are used for numerical simulations. The results in case of including UPFC are compared to the case where the transmission line is conventionally compensated (without UPFC) where two Hopf bifurcations are predicted with unstable operating point at wide range of compensation levels. For UPFC systems, it is worth to mention that the operating point of the system never loses stability at all realistic compensation degrees and therefore all power system bifurcations have been eliminated.

Publisher

Engineering, Technology & Applied Science Research

Reference37 articles.

1. W. Zhu, R. R. Mohler, R. Spce, W. A. Mittelstadt, D. Maratukulman, “Hopf Bifurcation in a SMIB Power System with SSR”, IEEE Trans. on Power Systems, Vol. 11, No. 3, pp. 1579-1584, 1996

2. A. M. Harb, Application of bifurcation theory to subsynchronous resonance in power systems, Doctoral Dissertation, Virginia Polytechnic Institute and State University, USA, 1996

3. A. M. Harb, M. S. Widyan, “Modern nonlinear theory as applied to SSR of the IEEE second benchmark model”, IEEE Bologna Power Tech. 2003 Conf., Bologna, Italy, June 23–26, 2003

4. A. M. Harb, M. S. Widyan, “Chaos and bifurcation control of SSR in the IEEE second benchmark model”, Chaos, Solitons and Fractals Journal, Vol. 21, pp. 537–552, 2004

5. N.G. Hingorani, L. Gyugyi, Understanding FACTS, IEEE Press, New York, 2000.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3