Wear Analysis of a Ti-5Al-3V-2.5Fe Alloy Using a Factorial Design Approach and Fractal Geometry

Author:

El-Morsy A. W.

Abstract

This paper describes the application of the full factorial experimental design technique to confirm the significance of the factors affecting the wear behavior of a recycled Ti-5Al-3V-2.5Fe alloy with a minimum number of experiments. The fractal theory has been used to describe the worn surface state and to investigate the relationship between the fractal dimensions and the surface morphology. The experiments of the sliding wear have been performed under stresses in the range of 1-5 MPa and within sliding velocities range of 0.2–2.0 m/s. Morphology of the worn surfaces investigations has been undertaken using a scanning electron microscope. From the analysis of variance and the nonlinear regression model, the results show that the applied stress has a higher contribution to the wear rate than the sliding velocity.

Publisher

Engineering, Technology & Applied Science Research

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of Influencing Factors on Surface Quality during Low-Speed Cutting of Steels with a Hardness exceeding 50 HRC for forging Dies;Engineering, Technology & Applied Science Research;2024-06-01

2. From clinic to lab: Advances in porous titanium-based orthopedic implant research;Journal of Materials Research and Technology;2024-05

3. Surface Finish Comparison of Dry and Coolant Fluid High-Speed Milling of JIS SDK61 Mould Steel;Engineering, Technology & Applied Science Research;2022-02-12

4. Spark plasma sintering of titanium matrix composite—a review;The International Journal of Advanced Manufacturing Technology;2021-08-19

5. Microstructure, Hardness, and Wear Assessment of Spark-Plasma-Sintered Ti-xAl-1Mo Alloy;Metallurgical and Materials Transactions A;2020-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3