Microscopical Characterization of Cast Hypereutectic Al-Si Alloys Reinforced with Graphene Nanosheets

Author:

Alghamdi A. S.,Ramadan M.,Abdel Halim K. S.,Fathy N.

Abstract

This paper illustrates the effects of stirring and graphene nanosheet (GNS) addition on the microstructure and mechanical behaviour of 393 hypereutectic Al-Si alloys used in the diesel engine pistons. Two processing routes were applied to fabricate hypereutectic Al-Si alloys: The first route mainly depends on stirring Al-Si alloys for 12 minutes at 400 rpm. The second one involves stirring Al-Si alloys for 2 minutes and then adding graphene nanosheets into the vortex, and consequently continue stirring for 10 minutes at 400 rpm. Results show that the distribution of the primary silicon was improved significantly in stir casting at both the edge and the center of the samples with relative reduction of 34% and 37% in the average particle size respectively. This average primary silicon size was further reduced by 17% with the addition of 1 wt% GNSs. GNS embedding into Al-Si alloy matrix resulted in remarkable increase in hardness values of the nanocomposites compared to the cast alloy.

Publisher

Engineering, Technology & Applied Science Research

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3