Identificación de especies de maderas locales mediante el uso de nariz electrónica y aprendizaje automático: un experimento preliminar

Author:

Mantilla Ramírez Naren ArleyORCID,Ruiz Jiménez Luisa FernandaORCID,Ortega Boada HomeroORCID,Sepúlveda Sepúlveda AlexanderORCID

Abstract

Introducción: La deforestación y extracción desordenada de madera ponen en peligro algunas especies maderables vulnerables. Estas especies prohibidas podrían detectarse durante su proceso de transporte si las entidades de vigilancia y control tuvieran los instrumentos de seguimiento adecuados. Si bien en trabajos anteriores se reportan métodos para identificar especies de madera, estos no son aplicables a sitios alejados de las principales ciudades. Objetivo: En el presente trabajo se propone utilizar narices electrónicas (arreglos de sensores químicos) para identificar especies maderables, a partir de los compuestos volátiles que estas emanan. Metodología: La medición de aromas se realiza mediante el uso de una matriz de 16 sensores químicos, cuyas curvas son la entrada a un procedimiento de estimación de características. Luego, se realiza un análisis de componentes principales, para finalmente aplicar una estrategia de clasificación basada en máquinas de vectores de soporte. En contraste a trabajos previos, en el presente trabajo las condiciones de recolección de muestras son más cercanas a las encontradas en entornos reales para los cuales este trabajo busca resolver el problema. Además, el número de muestras es mayor y más variado. Sin embargo, el número de muestras recolectadas para cada especie no está balanceado; por lo tanto, se aplica una técnica de aumento de datos para compensar el desequilibrio en las clases. Resultados: Al realizar los experimentos se encuentra un desempeño de aproximadamente 80%. Conclusiones: A pesar de los resultados prometedores, se deben realizar mayores esfuerzos para obtener un mejor desempeño.  

Publisher

Corporation Universidad de la Costa, CUC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3