Gas holdup and interfacial mass transfer in gas-liquid tower contactors with ejector-type gas distributors

Author:

Zahradník Jindřich,Kratochvíl Jan,Rylek Milan

Abstract

The effect of decisive construction parameters of ejectors on gas holdup and on the rate of interfacial mass transport (characterized by kLa values) was studied in a gas-liquid tower reactor (I.D. 0.3 m) with an ejector (Venturi-tube type) gas distributor. The selected ejector characteristics included diffuser length and angle of diffuser walls inclination as well as nozzle type and geometry. Experimental data confirmed validity of our previously published conclusions on the relation between the rate of energy dissipation in the place of dispersion formation (i.e. in the ejector) and gas holdup and kLa values. The efficiency of dissipated energy utilization was however significantly influenced by the diffuser geometry. According to our experimental evidence the increase of ejector energy effectiveness with increasing diffuser length can be ascribed solely to its favourable effect on the gas suction rate while the mechanism of phases mixing (dispersion formation) in ejector was apparently independent of diffuser geometry within the whole range of experimental conditions.

Publisher

Institute of Organic Chemistry & Biochemistry

Subject

General Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3