Abstract
The o-nitrobenzyl thiocyanate (I) behaves differently on the DME and on a large mercury pool electrode. Polarography did not give a sufficiently clear explanation of the reaction mechanism, only the preparative experiments yielded useful results. Whereas polarographic curves in solutions of Britton-Robinson buffer system with 50% by vol. ethanol exhibit two cathodic waves within the pH region 1-12, corresponding according to their height ratio to an uptake of 4 e and 2 e respectively, the controlled potential preparation electrolysis (CPE) and coulometry results indicate a more complicated reaction path. In the CPE carried out at the concentration of I 1 . 10 -2 mol/l the electroreductive splitting of CH2-SCN occurs as the first step. Nitrobenzyl radicals so formed react in the follow-up dimerization resulting in dibenzyl or toluene structures. Simultaneously or at a later stage the completion of the electrolytic reduction of the nitro group proceeds to the hydroxylamino group. In solution of 9 > pH > 1 the CPE of nitro compound I takes place by an ECEC mechanism yielding dibenzodiazocine III, its N-oxide IV and 2,2'-dimethylazoxybenzene (V). In course of preparative electrolysis in strongly acidic medium 2-amino-benzo(l,3)-thiazine-l-oxide (II) is formed by an EC mechanism.
Publisher
Institute of Organic Chemistry & Biochemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献