Abstract
Microwave heating was applied in homogeneous and in heterogeneous reactions and the results were compared from the point of view of activation of chemical reactions. Reactions including the addition of halo compounds to alkenes catalyzed by copper and ruthenium complexes in different solvents and NaY zeolite catalyzed alkylation of secondary amine in the absence of solvent were studied as model reactions to compare possibilities of microwave activation of reactants and catalysts. Rate enhancement of over one order of magnitude in homogeneous reactions was caused mainly by thermal dielectric heating effect which resulted from the effective coupling of microwaves to polar solvents. Activation of reactants and catalysts was very low if any. In heterogeneously catalyzed alkylation reactions highly efficient activation of zeolite catalyst was recorded. The results indicated that the best reaction conditions were in experiments when both activation of catalyst and performance of reaction were carried out under microwave conditions. Rate enhancement was most probably caused by "hot spots" or by "selective heating" of active sites. In both homogeneous and heterogeneous reactions non-thermal activation (specific effect) was excluded.
Publisher
Institute of Organic Chemistry & Biochemistry
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献