Excimer Formation in Oligo[2,5-bis(hexadecyloxy)-1,4-phenylene]s Followed by Fluorescence Spectroscopy

Author:

Výprachtický Drahomír,Cimrová Věra,Machová Luďka,Pokorná Veronika

Abstract

Using the steady-state and time-resolved fluorescence spectroscopy, the behavior of "hairy-rod" oligo- and poly[2,5-bis(hexadecyloxy)-1,4-phenylene]s in tetrahydrofuran solutions was investigated. The materials were prepared by the Yamamoto coupling reaction using zinc as a reducing metal, the nickel(II)/triphenylphosphine complex as a catalyst, and 2,2'-bipyridine as a coligand. The appropriate oligomer fractions were separated by fractional precipitation and characterized by GPC and end group analysis. The fluorescence quantum yield of oligomers and polymers increased with their increasing conjugation length. The fluorescence emission spectra of polymers and longer oligomers exhibited one emission maximum at 390 nm with a single-exponential decay and fluorescence lifetimes (τ) around 1 ns. The substitution in positions 2 and 5 forces the adjacent backbone benzene units out of the plane, which results in twist angles 60-80°, and the bulky substituents exclude the cofacial sandwich-type configuration necessary for excimer formation. However, with shorter oligomers, another emission band at 460 nm appeared. Fluorescence decays at 460 nm were found to be double-exponential with longer excited-state lifetimes [e.g. τ1 = 6.9 ns (76%), τ2 = 2.4 ns (24%)]. With shorter oligomers (dimer, trimer), we assume a sandwich-type configuration with sufficiently close interchain distance and hence the excimer can form. Hydrophobic interactions of long aliphatic side chains in a polar medium play an important role in the excimer formation.

Publisher

Institute of Organic Chemistry & Biochemistry

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3