Tuning of Electronic Properties in Conducting Polymers

Author:

Li Guofeng,Josowicz Mira,Janata Jiří

Abstract

Structural and electronic transitions in poly(thiophenyleneiminophenylene), usually referred to as poly(phenylenesulfidephenyleneamine) (PPSA) upon electrochemical doping with LiClO4 have been investigated. The unusual electrochemical behavior of PPSA indicates that the dopant anions are bound in two energetically different sites. In the so-called "binding site", the ClO4- anion is Coulombically attracted to the positively charged S or N sites on one chain and simultaneously hydrogen-bonded with the N-H group on a neighboring polymer chain. This strong interaction causes a re-organization of the polymer chains, resulting in the formation of a networked structure linked together by these ClO4- Coulombic/hydrogen bonding "bridges". However, in the "non-binding site", the ClO4- anion is very weakly bound, involves only the electrostatic interaction and can be reversibly exchanged when the doped polymer is reduced. In the repeated cycling, the continuous and alternating influx and expulsion of ClO4- ions serves as a self-organizing process for such networked structures, giving rise to a diminishing number of available "non-binding" sites. The occurrence of these ordered structures has a major impact on the electrochemical activity and the morphology of the doped polymer. Also due to stabilization of the dopant ions, the doped polymer can be kept in a stable and desirable oxidation state, thus both work function and conductivity of the polymer can be electrochemically controlled.

Publisher

Institute of Organic Chemistry & Biochemistry

Subject

General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3