Nano-Organized Structures in a Field: Equilibrium and Steady-State Gradient Focusing in Multicomponent Colloidal Systems

Author:

Janča Josef

Abstract

Focusing behaviour appearing in multicomponent colloidal systems exposed to the action of a field can be considered as a special case of the formation of the organized structures on a nanosize scale. The emergence of such structures was observed under the thermodynamic equilibrium conditions as well as at a steady state characterized by an entropy production due to an energy flux. It has already been proven that a complex liquid forming a primary concentration gradient should not necessarily behave as a continuum with respect to the focused species but the focusing effect can appear as well. Two theoretical models predicting equilibrium or steady-state gradient focusing under various conditions were published recently. The first model is based on a macroscopic dynamic mechanism and the other on a microscopic kinetic mechanism. Although seemingly complementary, they bring along some paradoxes. The dynamic model describes correctly the focusing of the large species in a continuum or pseudocontinuum gradient. Nevertheless, its application to the description of the focusing emerging in a bidisperse or multicomponent mixture of the colloidal particles of commensurable sizes does not seem to be physically adequate. The kinetic model provides a coherent physical image of the focusing in such a bidisperse or multicomponent mixture but, on the other hand, it gives rise to the mentioned paradoxes. In this study, both models were compared with the former theoretical approaches dealing with equilibrium or steady states established in multicomponent and/or concentrated colloidal systems interacting with a field. Moreover, computer simulation was carried out to elucidate the consequences of the mentioned paradoxes and to discuss the domain of the prevailing contribution of the macroscopic and microscopic mechanisms to the resulting focusing phenomenon.

Publisher

Institute of Organic Chemistry & Biochemistry

Subject

General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3