Thermodynamic framework for design of reaction rate equations and schemes

Author:

Pekař Miloslav

Abstract

It has been shown previously that rational thermodynamics provides general foundations of mass-action kinetic law from the principles of continuum, irreversible thermodynamics. Practical outcomes of this phenomenological theory are analyzed and compared with traditional kinetic approaches on the example of N2O decomposition. It is revealed that classical rate equations are only simplified forms of a polynomial approximation to a general rate function proved by the continuum thermodynamics. It is also shown that various special considerations that have been introduced formerly as additional hypothesis to satisfactorily describe experimental data are naturally included in the thermodynamic approach. The method, in addition, makes it possible to obtain more general mass-action-type rate equations that give better description of experimental data than the traditional ones. The method even reverses the classical kinetic paradigm – reaction scheme directly follows from the rate equation. Data fitting by this method also indicates connections to distinctions between processes at the molecular level and their representation by some macroscopic reaction network. The role of dependent and independent reactions in reaction kinetics and reaction schemes is clarified. A selected example demonstrates that this thermodynamic methodology may improve our design and understanding of thermodynamically and mathematically necessary and sufficient reaction schemes. The phenomenological theory thus sheds new, “thermodynamic” light on what has been and is done by generations of kineticists and gives new hints how to do it in a way consistent with non-equilibrium thermodynamics.

Publisher

Institute of Organic Chemistry & Biochemistry

Subject

General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3