Ultrafast Electronic Energy Flow in a Bichromophoric Molecule

Author:

Fidler Vlastimil,Kapusta Peter,Nepraš Miloš,Schroeder Jörg,Rubtsov Igor V.,Yoshihara Keitaro

Abstract

The intramolecular electronic excitation energy flow was investigated in a specially designed bichromophoric molecule, 2-(3-benzanthronylamino)-4-(1-pyrenylamino)-6-chloro-1,3,5-triazine (1) and was compared with the behaviour of two relevant component model compounds that closely mimic the photophysical properties of acceptor and donor sub-units in the bichromophore. Electronic absorption and fluorescence spectroscopy was applied (including fluorescence anisotropy and decay kinetics measurements with nanosecond to femtosecond time resolution) in order to resolve the energy relaxation process on a real time. An unambiguous piece of evidence is reported for an ultrafast process which leads to practically instantaneous population of the emitting state of the acceptor sub-unit after selective ≈200-fs-excitation of the donor sub-unit. This first direct observation of extremely fast energy transfer in a stiff bichromophore is significant for further development of relevant theory. Two conceptually different approaches to explaining such fast energy flow are discussed.

Publisher

Institute of Organic Chemistry & Biochemistry

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3