Author:
Votinský Jiří,Beneš Ludvík
Abstract
A computational procedure has been suggested enabling estimates of the flexibility of individual layered materials from their crystallographical structure. The data about flexibility of layers have been obtained by calculation for compounds of the type Q2Y3 (Q = SbIII, BiIII; Y = Se-II, Te-II; space group of symmetry R3m), MPS3 (M = MnII, FeII, CoII, NiII, CdII,C2/m), TX2 (T = NbIV, TaIV, MoV; X = S-II, Se-II; P63/mmc), FeOCl (Pmnm), Zr(HPO4)2 (P21/n) and ROPO4 (R = VV, NbV, Mo; P4/n). The flexibility of the layers of these compounds increases in the order: Q2Y3 << MPS3 < TX2 < FeOCl = Zr(HPO4)2 < ROPO4. The same trend is observed for the ability of these compounds to form intercalates. In most of the structures given a distinct anisotropy of flexibility has been found by the calculation.
Publisher
Institute of Organic Chemistry & Biochemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献