Low-Valent Titanocene Products from Attempted Syntheses of Titanocene Bearing Dimethyl(3,3,3-trifluoropropyl)silyl Groups

Author:

Lukešová Lenka,Horáček Michal,Gyepes Róbert,Císařová Ivana,Štěpnička Petr,Kubišta Jiří,Mach Karel

Abstract

Reduction of silyl-substituted titanocene dichloride [TiCl25-C5Me4(SiMe2CH2CH2CF3)}2] (1) with one molar equivalent of magnesium afforded a mixture of products, thus precluding the isolation of the possibly formed titanocene [Ti{(η5-C5Me4(SiMe2CH2CH2CF3)}2]. The presence of isolable monochloride [TiCl{η5-C5Me4(SiMe2CH2CH2CF3)}2] (2) in the mixture indicates that the mangnesium is consumed in concurrent reactions, that produce various titanocene compounds of which some were obtained by the reduction of 1 with excess magnesium. Those include the trinuclear TiIII-MgII-TiIII hydride-bridged complex [Ti{η5-C5Me4- (SiMe2CH2CH2CF3)}2(μ-H)2]2Mg (3) and a dimeric dinuclear Ti-Mg complex 4 containing the [TiIII(μ-H)2Mg(μ-X)]2 core where, however, the nature of the bridging moiety X remains unknown. The reduction of 1 with excess magnesium in the presence of bis(trimethylsilyl)ethyne afforded the product of C-H activation [Ti{η5-C5Me4(SiMe2CH2CH2CF3)}- {η51-C5Me3(CH2)(SiMe2CH2CH2CF3)}] (5) in 47% yield. This compound reacted rapidly with tert-butylethyne to give the TiIII-acetylide complex [Ti(η1-C≡CCMe3){η5-C5Me4- (SiMe2CH2CH2CF3)}2] (6). All the reductions of 1 at molar ratios Mg:Ti ≥ 1 gave mixtures, where a good deal of the reduction products remained in the mother liquors unidentified. The structures of 1, 2, 3, 5, and 6 were determined by X-ray diffraction analysis and, for 2, 3, 4, 5, and 6, further corroborated by ESR spectra.

Publisher

Institute of Organic Chemistry & Biochemistry

Subject

General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3