Electrochemical Study of Taylor-Couette Flow by Limiting Diffusion Current Method

Author:

Sobolík Václav

Abstract

Steady Taylor vortices were studied by electrodiffusion probes in the gap between coaxial cylinders. The inner cylinder was driven by a stepping motor and the outer cylinder was fixed. The viscosity of standard potassium hexacyanoferrates (III) and (IV) aqueous solution was increased to 2.52 mPa s by addition of poly(alkylene glycol) Emkarox 45. The velocity gradient components were measured by two three-segment probes at the wall of the outer cylinder for four radius ratios, R1/R2 = 0.8, 0.75, 0.65 and 0.6. The axial distribution of the azimuthal and axial components of velocity gradient was mapped while Taylor vortices were swept along the probes by a slow axial flow. The components of velocity gradient were described by fourth-order Fourier series. Generalized dependencies were found of the Fourier coefficients on Taylor number. A vertical shift of the probes made it possible to calculate the wavelength and the drifting velocity of Taylor vortices. Critical Taylor numbers were estimated from the axial component of velocity gradient and by the flow visualization using a rheoscopic liquid. The torque was calculated from the azimuthal component of velocity gradient.

Publisher

Institute of Organic Chemistry & Biochemistry

Subject

General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental investigation of the spherical Couette flow using electrodiffusion technique;The European Physical Journal Plus;2019-08

2. Experimental Investigations of Taylor-Couette Flow Using PIV and Electrochemical Techniques;Exergy for A Better Environment and Improved Sustainability 1;2018

3. Components of wall shear rate in wavy Taylor–Couette flow;Experimental Thermal and Fluid Science;2011-10

4. Electrochemical analysis of Taylor vortices;Journal of Applied Electrochemistry;2006-09-26

5. Wall shear rate in the Taylor–Couette–Poiseuille flow at low axial Reynolds number;International Journal of Heat and Mass Transfer;2002-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3