Author:
Lin Xiaoyu,Robins Morris J.
Abstract
Thermal inverse-electron-demand Diels-Alder reactions of 5-aminoimidazoles and 2,4,6-tris(ethoxycarbonyl)-1,3,5-triazine (2) with spontaneous retro-Diels-Alder loss of ethyl cyanoformate and elimination of ammonia give 2,6-bis(ethoxycarbonyl)purines. A report that selective alkaline hydrolysis followed by acid-catalyzed decarboxylation gave 6-(ethoxycarbonyl)purine products was not in harmony with known reactions in purine chemistry. Our reinvestigation has shown that the 6-(ethoxycarbonyl) group undergoes preferential base-promoted hydrolysis, as expected, but regioselectivity for attack of hydroxide at the carbonyl group at C6 is not high (relative to hydrolysis of both C2 and C6 esters). The structure of 9-benzyl-2-(ethoxycarbonyl)purine was determined by X-ray crystallography and confirmed by Curtius rearrangement of the azidocarbonyl analogue to give 2-amino-6-benzylpurine. Acid-catalyzed decarboxylation of the 2,6-dicarboxylate formed during hydrolysis gave 9-benzylpurine, and Curtius rearrangement of 2,6-bis(azidocarbonyl)-9-benzylpurine gave 2,6-diamino-9-benzylpurine. Attempted applications of inverse-electron-demand Diels-Alder reactions of 2 with nucleoside derivatives were problematic.
Publisher
Institute of Organic Chemistry & Biochemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献