Electronic States of Fe2S-/0/+

Author:

Hübner Olaf,Sauer Joachim

Abstract

The relative energies of a multitude of low-lying electronic states of Fe2S-/0/+ are determined by complete active space self-consistent field (CASSCF) calculations. The numerous states obtained are assigned to spin ladders. For selected states, dynamic correlation has been included by multireference configuration interaction (MRCI) and the structures of some high-spin states have been optimized by CASSCF/MRCI. Comparison is made with structures obtained by density-functional theoretical calculations. The ground states of Fe2S-/0/+ are 10B2, 1A1 and 8A2, respectively, and the total splittings of the lowest-energy spin ladders are about 0.18, 0.07 and 0.13 eV, respectively. The spin ladders of Fe2S qualitatively reflect the picture of Heisenberg spin coupling. While both Fe2S- and Fe2S+ show an Fe-Fe distance of about 270 pm, that of Fe2S is about 100 pm longer. The calculated adiabatic electron affinity of Fe2S is 1.2 eV and the ionization energy 6.6 eV. An interpretation of the observed photoelectron spectrum of Fe2S- is given.

Publisher

Institute of Organic Chemistry & Biochemistry

Subject

General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3