Decomposition of hydrogen peroxide on nickel oxide-manganese sesquioxide two-component catalysts and effect of ionizing radiation on them

Author:

Múčka Viliam

Abstract

The catalytic and some physico-chemical properties were studied of nickel oxide-manganese sesquioxide two-component catalysts with various proportions of the constituents. Decomposition of hydrogen peroxide in aqueous solution with the initial concentration 1.2 mol l-1 served as testing reaction. The catalyst components affect each other; the effect, being highest in the region of 20-30 mol.% manganese sesquioxide, brings about an enhanced dispersity of the system, with the result of increased surface area, increased amount of overstoichiometric oxygen and deficit in chemical analysis. Furthermore, the mutual component influencing appears in the specific catalytic activity of the system and in the amount of overstoichiometric oxygen per unit surface area, which is highest at 85 mol.% Mn2O3. A model of the mechanism is suggested for the reaction under study, based on the concept of bivalent catalytic centres, assuming that during the reaction, the high valency manganese species are gradually reduced as far as divalent manganese; this accounts for the occurrence of the observed two or three stages of hydrogen peroxide decomposition. Neither the mechanism of interaction of the two oxides nor the mechanism of the hydrogen peroxide decomposition changes on prior gamma irradiation of the catalyst. However, the irradiation affects markedly the catalytic activity of the system, the effect for catalyst of different composition being qualitatively different. Within the suggested concept of the reaction mechanism, the observed changes can be interpreted in terms of formation of non-eqilibrium charge carriers (electrons) resulting from the ionization both in the surface layer and in the catalyst bulk; after stabilization on the surface, the carriers may serve as adsorption centres for chemisorption of oxygen or may recombine with the catalytic centres of the reaction under study.

Publisher

Institute of Organic Chemistry & Biochemistry

Subject

General Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3