X-Ray Photoelectron Spectroscopic Studies of Palladium Dispersed on Carbon Surfaces Modified by Ion Beams and Plasmatic Oxidation

Author:

Bastl Zdeněk

Abstract

The effects of ion bombardment and r.f. plasma oxidation of graphite surfaces on subsequent growth and electronic properties of vacuum deposited palladium clusters have been investigated by methods of X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy with X-ray excitation (XAES). Due to the significantly increased density of surface defects on which the nucleation process occurs the bulk value of the Pd 3d core level binding energy is achieved at higher surface coverage by palladium on bombarded surfaces than on ordered graphite. Angle resolved photoelectron spectra of oxidized graphite surfaces reveal significant embedding of oxygen in graphite surface layers. The C 1s and O 1s photoelectron spectra are consistent with presence of two major oxygen species involving C-O and C=O type linkages which are not homogeneously distributed within the graphite surface layers. Two effects were observed on oxidized surfaces: an increase of palladium dispersion and interaction of the metal clusters with surface oxygen groups. Using the simple interpretation of the modified Auger parameter the relaxation and chemical shift contributions to the measured Pd core level shifts are estimated. In the region of low surface coverage by palladium the effect of palladium-oxygen interaction on Pd core level binding energy exceeds the effects of increased dispersity.

Publisher

Institute of Organic Chemistry & Biochemistry

Subject

General Chemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3