Author:
Ryšlavá Helena,Doubnerová Veronika,Muller Karel,Baťková Petra,Schnablová Renáta,Liberda Jiří,Synková Helena,Čeřovská Noemi
Abstract
Malic enzyme (L-malate: NADP+ oxidoreductase (oxaloacetate-decarboxylating), EC 1.1.1.40, NADP-ME), which was found in chloroplasts, was isolated from tobacco leaves (Nicotiana tabacum L.) almost homogenous. The specific enzyme activity was 0.95 μmol min-1 mg-1. The enzyme pH optimum was found between pH 7.1 and 7.4. The affinity of NADP-ME to substrates (L-malate and NADP+) was evaluated in the presence of divalent metal ions (Mg2+, Mn2+, Co2+, Ni2+). The value of the apparent Michaelis constant of NADP-ME for L-malate was dependent on the ion cofactor, while no such relationship was found for NADP+. The dependence of the reaction rate on concentration of Mg2+ indicates the presence of more than one binding site for these ions in NADP-ME. Likewise, the sigmoidal dependence of the reaction rate on Mn2+ concentration and the value of Hill coefficient 7.5 indicate the positive cooperativity of the reaction kinetics in the presence of the ions. The effect of Co2+ and Ni2+ ions was analogous to that of Mn2+ ions; however, the cooperativity was lower (the values of Hill coefficients were 3.0 and 1.3 for Co2+ and Ni2+, respectively). Regulation of NADP-ME from tobacco leaves by divalent metal ions is discussed.
Publisher
Institute of Organic Chemistry & Biochemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献