Author:
Špirko Vladimír,Bludský Ota,Kraemer Wolfgang P.
Abstract
The adiabatic three-dimensional potential energy surface and the corresponding dipole moment surface describing the ground electronic state of HN2+ (Χ1Σ+) are calculated at different levels of ab initio theory. The calculations cover the entire bound part of the potential up to its lowest dissociation channel including the isomerization barrier. Energies of all bound vibrational and low-lying ro-vibrational levels are determined in a fully variational procedure using the Suttcliffe-Tennyson Hamiltonian for triatomic molecules. They are in close agreement with the available experimental numbers. From the dipole moment function effective dipoles and transition moments are obtained for all the calculated vibrational and ro-vibrational states. Statistical tools such as the density of states or the nearest-neighbor level spacing distribution (NNSD) are applied to describe and analyse general patterns and characteristics of the energy and dipole results calculated for the massively large number of states of the strongly bound HN2+ ion and its deuterated isotopomer.
Publisher
Institute of Organic Chemistry & Biochemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献