On the reliability of the corrected semiempirical quantum chemical method (PM6-DH2) for assigning the protonation states in HIV-1 protease/inhibitor complexes

Author:

Pecina Adam,Přenosil Ondřej,Fanfrlík Jindřich,Řezáč Jan,Granatier Jaroslav,Hobza Pavel,Lepšík Martin

Abstract

A novel computational protocol for determining the most probable protonation states in protein/ligand complexes is presented. The method consists in treating large parts of the enzyme using the corrected semiempirical quantum chemical (QM) method – PM6-D2 for optimization and PM6-DH2 for single-point energies – while the rest is calculated using molecular mechanics (MM) within a hybrid QM/MM fashion. The surrounding solvent is approximated by an implicit model. This approach is applied to two model systems, two different carboxylate pairs in one general and one unique HIV-1 protease/inhibitor complex. The effect of the size of the movable QM part is investigated in a series of several sizes, 3-, 6-, 8- and 10-Å regions surrounding the inhibitor. For the smallest region (< 450 atoms) the computationally more costly DFT QM/MM optimizations are performed as a check of the correctness. Proton transfer (PT) phenomena occur at both the PM6-D2 and DFT levels, which underlines the requirement for a QM approach. The barriers of PT are checked in model carboxylic acid pairs using the highly accurate MP2 and CCSD(T) values. An important result of this study is the fine-tuning of the protocol which can be used in further applications; its limitations are also shown, pointing to future developments. The calculations reveal which protonation variants of the active site are the most stable. In conclusion, the presented protocol can also be utilized for defining probable isomers in biomolecular systems. It can also serve as a preparatory step for further interaction-energy and binding-score calculations.

Publisher

Institute of Organic Chemistry & Biochemistry

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3