Fluorescent oligonucleotides containing a novel perylene 2′-amino-α-L-LNA monomer: Synthesis and analytical potential

Author:

Astakhova Irina V.,Kumar T. Santhosh,Wengel Jesper

Abstract

Herein, a novel fluorescent nucleotide analogue, perylene-2′-amino-α-L-LNA, has been prepared and studied within synthetic oligonucleotides of different sequences. The phosphoramidite reagent was synthesized in 85% overall yield starting from 2′-amino-α-L-LNA nucleoside. Incorporation efficiency of the resulting perylene-2′-amino-α-L-LNA monomer (T*) into synthetic oligonucleotides was significantly improved by replacement of the typically used 1H-tetrazole activator with pyridine hydrochloride. Generally, oligonucleotides containing monomerT* showed high binding affinity towards complementary DNA and RNA targets, batochromically shifted excitation/emission wavelengths with respect to the often applied polyaromatic hydrocarbon pyrene, high fluorescent quantum yields and very low target detection limits (5–10 nM). Fluorescence of single stranded LNA/DNA mixmer oligonucleotide having two incorporations of monomersT* was quenched (quantum yield ΦF= 0.21) relative to duplexes of this probe with complementary DNA and RNA (ΦF= 0.42 and 0.35, respectively). On the contrary, a strong fluorescence quenching upon target binding was demonstrated by two short oligonucleotides of analogues sequences containing monomersT* at 5′- and 3′-terminal positions. We explain the hybridization-induced light-up effect observed for double-labeled probe by a reduction of fluorescence quenching due to precise positioning of the fluorophores within the double-stranded complexes. Furthermore, we propose that a covalent link between twoT* monomers in the double-labeled probe provides a remarkable degree of rigidity in the double helix which enforces positioning of the bulky perylene moieties in the nonpolar groove resulting in reduced fluorescence quenching.

Publisher

Institute of Organic Chemistry & Biochemistry

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3