Metabolism of Carcinogenic 2-Nitroanisole in Rat, Rabbit, Porcine and Human Hepatic Cytosol

Author:

Mikšanová Markéta,Novák Petr,Frei Eva,Stiborová Marie

Abstract

We investigated the ability of hepatic cytosolic samples from human, rat, rabbit and pig to metabolize an important industrial pollutant and a potent carcinogen for rodents, 2-nitroanisole (1-methoxy-2-nitrobenzene). A comparison between experimental animals and the human enzymatic system is essential for the extrapolation of animal carcinogenicity data to humans to assess a health risk to humans. Two major metabolites produced from 2-nitroanisole by cytosols of all species wereN-(2-methoxyphenyl)hydroxylamine and 2-methoxyaniline. An additional minor product of 2-nitroanisole metabolism has not yet been characterized. Both the identified metabolites are generated from 2-nitroanisole by reduction of the nitro group. To define the role of cytosolic reductases in the reduction of 2-nitroanisole, we investigated the modulation of 2-nitroanisole reduction by cofactors of the cytosolic reductases, DT-diaphorase and xanthine oxidase. The role of the human enzymes in 2-nitroanisole reduction was also investigated by correlating the xanthine oxidase-linked catalytic activities in each human cytosolic sample with the concentration of the 2-nitroanisole reduction product, 2-methoxyaniline, formed by the action of the same cytosol. On the basis of these analyses, most of hepatic cytosolic reduction of 2-nitroanisole was attributed to xanthine oxidase, but participation of DT-diaphorase in the reduction of this carcinogen in hepatic cytosols of rabbit and pigs cannot be excluded. Using the purified xanthine oxidase, its participation in 2-nitroanisole reduction was confirmed. The data clearly demonstrate the predominant role of xanthine oxidase in 2-nitroanisole reduction in human and rat hepatic cytosols and suggest a carcinogenic potency of this rodent carcinogen for humans.

Publisher

Institute of Organic Chemistry & Biochemistry

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3