Dehydrogenation of Substituted Alcohols to Aldehydes on Zinc Oxide-Chromium Oxide Catalysts

Author:

Gulková Daniela,Kraus Miloš

Abstract

Sixteen primary alcohols of the structure RCH2OH (R = CH3, C2H5, (CH3)2CH, (CH3)3CCH2, HOCH2, CH3OCH2, C6H5, C6H5CH2, C6H5OCH2, ClCH2, BrCH2, F3C, CNCH2, (CH3)2NCH2, (C2H5)2NCH2 and tetrahydrofurfuryl) were explored for the possibility of obtaining the corresponding aldehydes by dehydrogenation on solid catalysts. Various catalysts were tested and two zinc oxide-chromium oxide catalysts were selected for further work because their activity and selectivity was satisfactory; moreover, the selectivity could be improved by addition of sodium into the catalysts and of water into the feed. The reaction was performed in the temperature range 250-450 °C and at atmospheric pressure. 2-Chloroethanol, 2-bromoethanol, ethylene glycol, 2-cyanoethanol and 2-(N,N-diethylamino)ethanol decomposed and deactivated the catalyst. The other alcohols were studied from the point of kinetics of dehydrogenation, which was described by a Langmuir-Hinshelwood type rate equation (3), and of substituent effects on rate, which were correlated by Taft equation (1) with the slope ρ = -1.46. The preparative value of catalytic dehydrogenation for obtaining substituted aldehydes was confirmed by prolonged runs and isolation of the aldehydic product by distillation using as the feeds 2-methoxyethanol and 2-(N,N-dimethylamino)ethanol, respectively.

Publisher

Institute of Organic Chemistry & Biochemistry

Subject

General Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3