Feasibility Study and Design of In-Road Electric Vehicle Charging Technologies

Author:

Konstantinou Theodora,Haddad Diala,Prasad Akhil,Wright Ethan,Gkritza Konstantina,Aliprantis Dionysios,Pekarek Steven,Haddock John E.

Abstract

Electric Roadways (ERs) or Dynamic Wireless Charging (DWC) lanes offer an alternative dynamic and wireless charging method that has the potential of giving electric vehicles (EV) limitless range while they are moving. Heavy-duty vehicles (HDVs) are expected to be early adopters of the DWC technology due to the higher benefits offered to these vehicles that are traveling on fixed routes. The goal of this project was to assess the feasibility of ERs in Indiana and design a test bed for in-road EV charging technologies. The most suitable locations for implementing DWC lanes were identified on interstates that are characterized by high truck traffic. Using I-65 S as a case study, it was found that DWC can be economically feasible for the developer and competitive for the EV owner at high and medium future projections of EV market penetration levels. However, the existing substations are unlikely to serve future DWC needs for HDVs. Thus, consideration should be given to substation expansion to support EVs as market penetration expands. Implementing the DWC technology on interstates and jointly with major pavement preservation activities is recommended. Large scale deployment can significantly reduce the high initial investment. Renewable energy resources (solar and wind) deployed in the vicinity of ERs can reduce the electricity costs and associated greenhouse gas emissions.

Publisher

Purdue University

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Utilization of Blockchain and Smart Contracts in Charging Coordination of Roadway-Powered Electric Vehicles;IEEE Access;2024

2. Mixed-Integer Programming with Enterprise Risk Analysis for Vehicle Electrification at Maritime Container Ports;2023 IEEE Symposium Series on Computational Intelligence (SSCI);2023-12-05

3. Analysis and static mode optimization of simultanious inductive and capacitive coupled wireless power transfer system;2023 IEEE 64th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON);2023-10-09

4. Planning and Design for Wireless Enroute Charging Infrastructure;International Conference on Transportation and Development 2023;2023-06-13

5. Smart Steps Towards Sustainable Transportation: Profitability of Electric Road System;Balkan Journal of Electrical and Computer Engineering;2023-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3