Angren coal pit Centralny landslide slope stability analysis based on a three-dimensional geological-geophysical model

Author:

Karablin Mikhail, ,Prostov Sergei,

Abstract

Introduction. In the course of mining mineral deposits by opencast, natural stress state of adjacent rock mass changes giving rise to geomechanical processes which lead to pit slopes deformation. It can be prevented by mean of detecting landslide-hazardous zone by using three-dimensional geological-geophysical models based on the data bases from prospecting surveys and geophysical sounding of the adjacent rock. Research aim is to develop and evaluate basic provisions of the methods of forecasting slope stability based on three-dimensional geological-geophysical models which include the following information: the results of geophysical sounding (waterlogged zones boundaries); databases of exploration wells (physicalmechanical properties of soils in the zones of water saturation and natural moisture content, and the relief of the natural surfaces of weakness); design and actual position of mine workings. Methodology. In order to find the most hazardous section in the adjacent rock mass an algorithm of forecasting has been proposed and adjacent rock mass stability has been analyzed based on threedimensional geological-geophysical models. Results. A three-dimensional geological-geophysical model of Centralny landslide has been constructed as a result of analyzing geological survey databases, surveying instrumental observations over the deformations, and electrical sounding of the adjacent rock mass. Values of the friction angle and cohesion were found with using the inverse calculation method. Centralny landslide stability forecast has been analyzed as of the year of 2018 and after the final completion of the first stage of loading-out the front section in 2025. Summary. Developed an algorithm of slope stability analysis makes it possible to solve the task of finding the most hazardous section or landslide area by means of computer-based realization.

Publisher

Ural State Mining University

Subject

Materials Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3