Carbon-Based Nanomaterial Embedded Self-Sensing Cement Composite for Structural Health Monitoring of Concrete Beams - A Extensive Review

Author:

Dinesh A.

Abstract

Abstract. Structural health monitoring has proven to be a dependable source for ensuring the integrity of the structure. It also aids in detecting and estimating the progression of cracks and the loss of structural performance. The most compelling components in the structural health monitoring system are sensing material and sensor technology. In health monitoring systems, fiber optic sensors, strain gauges, temperature sensors, shape memory alloys, and other types of sensors are commonly used. Even though the sensors bring monetary value to the system, they have some apparent drawbacks. As a result, self-sensing cement composite was established as a sensor alternative with better endurance and compatibility than sensors. Carbon nanotubes, nanofibers, graphene nanoplates, and graphene oxide are carbon-based nanomaterials with unique mechanical and electrical properties. As a result, this review comprises a complete assessment of the fresh, mechanical, and electrical properties of self-sensing cement composite developed using carbon-based nanoparticles. The research also focuses on the self-monitoring performance of cement composite in concrete beams, both bulk and embedded, by graphing the deviation of fractional change in resistivity with strain. The network channel development of carbon-based nanomaterials in cement composites and their characterization acquired using scanning electron microscopy (SEM), and X-Ray diffraction spectroscopy (XRD) research are also comprehensively discussed. According to the study, increasing carbon-based embedment decreased the relative slump and flowability while increasing the composite's compressive, split tensile, flexural, and post-peak performance. Also, the amount of carbon in the carbon-based nanomaterial directly relates to the composite's conductivity. As a result, the development of piezoresistive and sensing capabilities in carbon-based self-sensing cement composites not only improves mechanical and conductive properties but also serves as a sensor in structural health monitoring of flexural members.

Publisher

Materials Research Forum LLC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3