An innovative method to model run-out phenomena in micro-milling by using cutting force signal

Author:

SENECI Greta

Abstract

Abstract. This work deals with the modeling of micro-milling processes by considering the phenomena generated by the transition from conventional size to the micro-scale machining. The concomitant effects of different cutting regimes, and the deviation of the cutting edges from their theoretical trajectories due to tool run-out, are important aspects to be considered during the process modeling. Several models are available in literature to describe how ploughing and shearing regimes influence cutting forces and how the tool run-out impacts on the actual chip thickness. In a previous authors research, a comprehensive model was published achieving a good agreement with the experimental data, but its calibration requires the measurement of the width of the micro-milled slots. This practice is time consuming and subjected to experimental errors, while a calibration of the model based only on the elaboration of the cutting force signal appears a promising strategy. Starting from the mathematical description of the geometrical model, a new equation to compute the tool run-out parameters was found. The parameters depend on eight variables that must be calculated from tool geometry, material composition, cutting parameters and the cutting force signal. An experimental procedure was developed to compare the prediction achieved by the new method and the conventional technique.

Publisher

Materials Research Forum LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3