Identification of the thermal conductivity of polymer materials during their crystallization
Abstract
Abstract. Controlling the quality of industrial products requires an accurate comprehension of the material’s behavior during the several transformation phases. An accurate estimation of the heat transfers taking place throughout the production phases necessitates the exact knowledge of the thermophysical properties. These properties are well known in the solid state, however they are less mastered in the liquid state and during transformation. The main objective of this research project is to estimate the evolution of the thermal conductivity during transformation by solving an inverse heat conduction problem. The calculation outputs ought to describe the evolution of the thermal conductivity function of two coupled fields: the temperature and the transformation degree. The inverse method relies on a finite difference numerical model and a hybrid optimization algorithm, combining a stochastic method with a deterministic method. The temperature evolution within a thermoplastic undergoing transformation is measured with the help of an instrumented mold. The thermal conductivity values are identified by minimizing the discrepancy between the experimentally measured temperature profile and the one numerically simulated. The acquired results are compared with the mixing law, classically used to take into account the phase change of a material. It is observed that the values acquired by the established inverse method reproduce the measured temperature profiles more accurately than the mixing law.
Publisher
Materials Research Forum LLC