Modelling ductile fracture in an Al alloy with crystal plasticity models

Author:

KHADYKO Mikhail

Abstract

Abstract. Crystal plasticity models enhanced with coupled or uncoupled damage and fracture criteria give an opportunity to account for the role of microstructure in ductile fracture, most directly representing the local variations of stress and strain fields inside and between the grains, voids and particles. Some computationally efficient crystal plasticity, damage and fracture models have recently been developed and applied to some cases of polycrystalline fracture. Such models allow to investigate in a direct way the effects of, e.g., shear bands, larger voids, particles, free surfaces and load direction on the development of damage and fracture. The cast and homogenized Al1.2Mn alloy investigated previously is used here as a basis for simulations. The alloy has an equiaxed grain structure with no texture and contains a population of larger particles and a population of dispersoids. The grain structure and the large particles are modelled directly in the finite element model, while the effect of dispersoids is represented by the damage and fracture part of the single crystal plasticity model. The study investigates the effect of different model parameters and features on the global and local behaviour of the material during localization and fracture, in light of available experimental data.

Publisher

Materials Research Forum LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3