Improving the structural integrity of challenging to manufacture LPBF components with toolpath correction

Author:

JENSCH F.

Abstract

Abstract. This work deals with the influence of optimised exposure strategies on the distortion and microstructure of components susceptible to overheating and warpage. Therefore, different distortion-prone specimen geometries of 316L were fabricated with the standard parameters, as well as with exposure strategies optimised by machine learning, which were generated using the AMAIZE software package. The manufactured samples were analysed with regard to distortion. The results of the distortion analysis were then linked with the results of the digital tomography from AMAIZE. Furthermore, components were manufactured that tend to overheat due to their geometry and orientation on the substrate plate. The influence of overheating during the LPBF process on the microstructure and porosity was investigated along the build-up direction by means of an EBSD analysis and a porosity analysis. With the presented approach for optimising the exposure strategy with AMAIZE, it could be shown that a successful production of distortion-prone components with a porosity of less than 1 % is possible in the first trial.

Publisher

Materials Research Forum LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3