Abstract
Abstract. This research presents a comprehensive study on the production of aluminum-matrix composite (AMC) powders using ultrasonic atomization for additive manufacturing (AM). The impact of different heat sources—plasma, arc, and induction melting—was evaluated on the processability and resultant properties of the AMC powders, including morphology, size, and composite structure. Additionally, induction melting was considered in terms of process parameters such as pressure difference, nozzle size, and frequency. The analysis of AMC powder processability revealed that the efficiency of the ultrasonic process depended on the selected heat source. The highest efficiency, nearly 50%, was attained with the induction system. All produced AMC powders exhibited high sphericity, with average sizes ranging from 88.2 to 120 µm. However, the desired composite structure was not achieved under tested conditions due to the decrease in SiC particle content from 20% in the feed material to approximately 3.5% in the final AMC powder. Based on these results, the research highlights the potential and limitations of ultrasonic atomization in AMC powder production, emphasizing the need for further optimization to improve powder quality and process efficiency for broader industrial application in AM.
Publisher
Materials Research Forum LLC