Abstract
Abstract. Nowadays, most of the product designs rely on the aid of simulation software, particularly Finite Element Analysis (FEA) programs. However, an accurate simulation requires a proper virtual/numerical material behavior reproduction, meaning a precise material characterization through constitutive models and their parameters. To numerically characterize a material, particularly a metal, (i) experimental tests, (ii) model selection and (iii) inverse procedures are required. All these three tasks can be expensive and time-consuming. Therefore, product development engineers resort to materials databases to obtain the virtual materials, i.e. the constitutive models and their parameters adequate for the desired material. However, the information provided by the materials databases does not include experimental data nor provide information on the testing procedures. Due to this absence, users cannot verify the information nor its accuracy on the material database. Moreover, data related to material constitutive models, required for accurate simulations seems to be absent [1]. This work presents the development of a new material database that revises the previous problem. This database has the focus on virtual materials and their importance in product simulation and design. The presented VForm-xSteels material database includes (a) mechanical models and their implementation in FEA software, (b) experimental data and (c) the parameters identified for each material, and (d) indications concerning the quality of the material behavior reproduction associated with each model/parameters set. This database can be enlarged by the contributions of all users and present the following benefits for the engineering community: (i) increasing the precision and reliability of numerical FEA simulations by providing accurate input data, filling then a gap of the FEA market and answering to the request of the FEA users; (ii) reducing the development lead-time of metallic parts and the development of robust technological solutions with highly improved quality, consequently decreasing cost and time in the overall development process.
Publisher
Materials Research Forum LLC