Abstract
Abstract. This study proposes a new approach on a multiscale analysis of 316L stainless steel microstructures to enhance the predictability and homogeneity of microstructure for the Wire Arc Additive Manufacturing (WAAM) process. Despite the promise in the fabrication of large-scale metallic components, achieving consistent microstructure and mechanical properties remains a challenge with WAAM. This research investigates the solidification behaviors, grain morphology, and mechanical characteristics of 316L stainless steel, aiming to develop a predictive framework for WAAM process optimization. By employing a systematic approach to the fabrication and subsequent analysis of 316L stainless steel walls, the study reveals critical insights into thermal gradients, solidification rates, and their impacts on microstructural features. The findings are anticipated to inform improved fabrication strategies, leading to enhanced mechanical properties and reliability in WAAM-manufactured components based on mereotopology philosophical framework. A spatio-temporal of the different tracks could be defined based on trajectory analysis.
Publisher
Materials Research Forum LLC