Experimental and numerical study of heat transfer on an industrial FFF printer: Application to PEEK

Author:

BENARBIA A.

Abstract

Abstract. The FFF process is one of the most widely used additive manufacturing processes for shaping thermoplastic polymers. The recent development of industrial printers equipped with high-temperature ovens has made it possible to print high-performance thermoplastics from the PAEK family for applications in the aerospace, medical and other industries. Numerous studies have shown that thermal history is a key factor to improve the mechanical properties of printed parts. Nevertheless, the uniformity of mechanical properties of printed parts is generally poor and highly dependent on the homogeneity of the thermal oven used, which, to our knowledge, has never been properly characterized. For semi-crystalline polymers, the thermal driven crystallization process is also a key factor in adhesion. However, the coupling between phase transformation and heat transfer is often neglected in numerical modelling and its influence has not yet been clearly demonstrated. In this work, we will carry out a preliminary characterization of the printer by measuring air velocity and temperature gradients over the whole printing zone. Secondly, the comparison between simulation and experimental measurements will show the importance of correctly predicting crystallization kinetics to obtain more accurate predictions.

Publisher

Materials Research Forum LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3