Innovative self-learning disturbance compensation for straightening processes

Author:

BATHELT L.

Abstract

Abstract. To increase the sustainability of forming processes such as punch bending, homogenization of the processed semi-finished product is an essential step in the manufacturing process. High-strength wire materials are usually available as strip material before being further processed in a forming process. For storage and transport, the material is coiled onto coils and transported to the customer. During the coiling process, residual stresses and plastic deformation are introduced into the wire. Thus, the final product quality is also influenced by the geometry of the coil. Straightening machines are used in production lines to compensate for these. Once a straightening machine has been set up, the settings for the roll positions are usually not changed. As a result, there is no reaction to material fluctuations, which means that the components to be produced do not meet the dimensional accuracy requirements. This leads to an increase in the rejection rate in manufacturing processes. To reduce the rejection rate, it is necessary to enable dynamic and flexible infeed of the straightening rollers. In this context, an innovative control concept with disturbance compensation was developed for the straightening process. The disturbance compensation uses a disturbance model that predicts the change in bending curvature over the coil radius. With this prediction, the straightening machine can be adjusted specifically. The roller positions are adjusted by a subordinate position control. The additional feedback from measured geometric product properties from the following punching-bending process enables the straightening machine to be adjusted even in the case of unforeseen fluctuations in the material properties. In this way, it is possible to react to any material fluctuations as required. This novel, demand-oriented adjustment of the straightening machine is expected to result in a high increase in the efficiency of the production process and a reduction of the rejection rate.

Publisher

Materials Research Forum LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3