Influence of enlarged joining zone interfaces on the bond properties of tailored formed hybrid components made of 20MnCr5 steel and EN AW-6082 aluminium

Author:

PIWEK A.

Abstract

Abstract. Hybrid material compounds offer an extension of the technological application range of monolithic components by combining positive material-specific properties. In the case of steel and aluminium, a load-adapted component with high strength areas and a reduced weight can be created. Tailored Forming enables the joining zone created by a pre-joining process to be modified and enhanced by a subsequent forming step. Derived from previous studies, an enlarged joining zone interface through spherical joining zone curvature and an equalisation of yield stresses through an inhomogeneous induction heating with partial cooling are necessary to achieve a defect free bond with high strength and ductility. In order to further enlarge the joining zone interface and hence to increase the surface ratio of juvenile welding spots without brittle intermetallic compounds, different local plastic strains are induced. Additionally, an alternative spray cooling concept is used to evaluate the effect of steeper temperature gradients on the bond quality. Rotary friction welded specimens made of 20MnCr5 steel and EN AW-6082 aluminium are cup backward extruded with different extrusion ratios using punch diameters of 22 mm and 30 mm. Metallographic images, SEM analysis and hardness tests of cross-sections are used to evaluate the bond quality with regard to the joining zone formation, occurring defects and the resulting intermetallic compound. With cooling, higher yield stresses could be set in the aluminium, which counteract material failure even with larger punch diameters due to a higher deformability. However, the surface enlargement of the joining zone is reduced. Despite the higher surface enlargement in uncooled specimens, insufficient bonds were achieved due to existing cracks in the aluminium in or near the joining zone interface, as well as significant thicker intermetallic compounds.

Publisher

Materials Research Forum LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3