Numerical process design for the production of a hybrid die made of tool steel X38CrMoV5.3 and inconel 718

Author:

SIRING Janina

Abstract

Abstract. Dies used in hot forging are subjected to high cyclic thermo-mechanical loads, which lead to die failure. There are various options for increasing the service life of these dies, for example coatings or heat treatments. Another possibility is to adapt the choice of material, which is the focus of this work. For example, the nickel-based alloy Inconel has a higher strength at elevated temperatures compared to tool steel. However, Inconel is difficult to manufacture and has higher material costs. For this reason, a new process design for the production of a hybrid die consisting of Inconel 718 and tool steel X38CrMoV5.3 is presented within this work. To produce the hybrid dies, the two materials are first friction welded and then formed using hot forging. In addition to the numerical process design, experimental tests are also carried out to manufacture such hybrid dies. Furthermore, a numerical parameter study is done to determine the influence of the forging temperature, the forging speed and the initial Inconel thickness on the process parameters. It can be shown that the production of hybrid dies is possible by using the Tailored Forming process chain. The influencing factors investigated change the required press force and also the material distribution of the Inconel in the hybrid die produced. In the future, further experimental tests will be carried out to determine the service life of the hybrid dies.

Publisher

Materials Research Forum LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3