Micromechanical modeling of failure in dual phase steels

Author:

AYDINER I.U.

Abstract

Abstract. Having brittle martensitic islands diffused in a ductile ferrite matrix, dual-phase (DP) steels are known for their high formability and favorable material properties. Although they have already proven their advantages in the industry, there are still discussions regarding their microstructure-macroscopic response link. In order to effectively exploit their advantages and analyze their ductility in metal forming operations, the failure mechanisms of DP steels must be well examined following a micromechanics-based approach. There are a number of failure mechanisms to be addressed at the micro scale such as ferrite-martensite and ferrite-ferrite interface decohesion as well as martensite cracking depending on the different microstructural parameters and stress state. A crystal plasticity based finite element framework for RVE calculations is followed here based on the previous work which focuses solely on the plastic deformation (see [1]). Isotropic J2 plasticity model is employed for the hard martensite phase while the rate-dependent crystal plasticity framework is used for the ductile ferrite phase. Cohesive zone elements are inserted at the ferrite-martensite and ferrite-ferrite interfaces for intergranular cracking analysis, besides, intragranular cracking in martensite phase is addressed through an uncoupled damage model. First, a preliminary study was performed in order to identify and calibrate aforementioned failure models, then, various 3D polycrystalline RVEs having different microstructural parameters loaded with different stress triaxialities are analyzed and discussed adding up to the preliminary discussions presented in [2].

Publisher

Materials Research Forum LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3