Prevention of scaling by means of recycled process waste gases

Author:

GERKE Niklas

Abstract

Abstract. During hot forging of steel materials, the blanks are subjected to various heating processes. During these processes, scale is formed, which can lead to a mass loss of up to 3%. The additional mass required to compensate this material loss for a given forging component has a significant impact on the process emissions, as the production of the billet material has the highest impact on the overall CO₂ footprint of metal forming products [1]. Additionally, descaling operations such as upsetting are required to guarantee forging quality and process stability. At the same time, large quantities of process waste gas are emitted in the production of raw materials and components. These burnt gases have lower oxygen concentration due to the prior chemical combustion reaction. This work addresses the question, whether these burnt gases can be utilized as a forging process atmosphere. This would not only reduce material loss, but would also result in a reuse of the process waste gas. In order to retrofit existing forging infrastructure, a tooling system with a gas-tight enclosure was constructed and realized in a forming press. Defined gas combinations were fed into the enclosure to create an oxygen-reduced atmosphere. First, different gas combinations were investigated in annealing tests. The three most promising ones were then selected for the forging tests. The enclosure contained a heating, transport, forming and collecting unit. The blanks were fed in through a magazine and inductively heated to 1200 °C, formed and cooled under the defined atmosphere. In each atmosphere, 100 components were forged from the material 42CrMo4. Furthermore, it was investigated whether forming under a gas atmosphere has an influence on tool wear as scale can act as an abrasive. The investigations showed that both the surface of the starting material and the oxygen concentration of the atmosphere have a significant influence on scale formation. The amount of scale formed was reduced by up to 74% compared to an oxygen atmosphere. The adhesive layer on the upper dies was reduced with decreasing oxygen concentration. On the lower dies was an increased adhesive build-up.

Publisher

Materials Research Forum LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3