Abstract
Abstract. To deepen the understanding of material behavior after additive manufacturing, this article focuses on the prediction of material properties after the Wire Arc Additive Manufacturing (WAAM) process. Particular attention is put on the temperature curves in the various phases of the welding process, which influence the final material properties, especially the hardness of the resulting part. A total of nine components in the form of walls were produced using the WAAM process, with the number of layers varying from 1 to 9. By experimentally analyzing the welded parts, which were cut in the middle of their length, it was possible to gain insights into the development of hardness at selected points. The entire test setup was simulated in the Simufact Welding FE-software. The simulation results in the form of temperature-time diagrams were then correlated with the real hardness measurements at the corresponding points. In this way, a model was developed that for the first time considers the development of hardness as a result of cooling after the welding process as well as the change in hardness as a result of reheating due to the application of additional layers.
Publisher
Materials Research Forum LLC