Study on Rock Mechanics Parameter Prediction Method Based on DTW Similarity and Machine-Learning Algorithms

Author:

,Cai Wenjun,Ding Jianqi, ,Li Zhong, ,Yin Zhiming, ,Feng Yongcun,

Abstract

Rock mechanics parameters are crucial factors for predicting rock behavior in oil and gas reservoirs, optimizing extraction strategies, and ensuring drilling safety. In this study, we propose a random forest (RF)-convolutional neural network (CNN)-long-term short-term memory network (LSTM) fusion model based on the dynamic time warping (DTW) algorithm to construct intelligent prediction models for elastic modulus, Poisson’s ratio, and compressive strength using real-time drilling engineering data. An autoencoder with a sliding window is employed to automatically identify abnormal points or segments in the calculated values of elastic modulus, Poisson’s ratio, and compressive strength obtained from drilled wells. These abnormal values are then corrected using a backpropagation (BP) neural network. Compared to single CNN-LSTM or single RF models, the RF-CNN-LSTM fusion model performs better. It achieves this by effectively combining the strengths of different algorithms in predicting outcomes. The accuracy of the RF-CNN-LSTM fusion model is over 94% when compared to the actual values. Furthermore, the analysis of the relative importance of input parameters reveals that weight on bit (WOB), temperature, displacement, equivalent circulation density (ECD), and mud density are the primary input features for predicting elastic modulus. For predicting Poisson’s ratio, the main input features include WOB, mud density, ECD, temperature, pumping pressure, displacement, and rate of penetration (ROP). Similarly, for predicting compressive strength, the main input features consist of WOB, temperature, displacement, ECD, and mud density. The research findings demonstrate that the rock mechanics parameter prediction models based on the RF-CNN-LSTM algorithm using DTW exhibit high computational accuracy in the B oil field of China. These results are significant for gaining a deeper understanding of the variations in rock mechanics parameters and optimizing drilling decisions.

Publisher

Society of Petrophysicists and Well Log Analysts (SPWLA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3