Enigmatic Reservoir Properties Deciphered Using Petroleum System Modeling and Reservoir Fluid Geodynamics

Author:

Pierpont Rob, ,Birkeland Kristoffer,Cely Alexandra,Yang Tao,Chen Li,Achourov Vladislav,Betancourt Soraya S.,Canas Jesus A.,Forsythe Julia C.,Pomerantz Andrew E.,Yang Jing,Datir Harish,Mullins Oliver C., , , , , , , , , , , ,

Abstract

Two adjacent reservoirs in offshore oil fields have been evaluated using extensive data acquisition across multiple disciplines; several surprising observations were made. Differing levels of biodegradation were measured in the nearly adjacent reservoirs, yet related standard geochemical markers are contradictory. Unexpectedly, the more biodegraded oil had less asphaltene content, and this reservoir had some heavy end deposition in the core but upstructure, not at the oil-water contact (OWC) as would be expected, especially with biodegradation. Wax appears to be an issue in the nonbiodegraded oil. These many puzzling observations, along with unclear connectivity, gave rise to uncertainties about field development planning. Combined petroleum systems and reservoir fluid geodynamic considerations resolved the observations into a single, self-consistent geo-scenario, the co-evolution of reservoir rock and fluids in geologic time. A spill-fill sequence of trap filling with biodegradation helps explain differences in biodegradation and wax content. A subsequent, recent charge of condensate, stacked in one fault block and mixed in the target oil reservoir in the second fault block, explains conflicting metrics of biodegradation between C7 vs. C16 indices. Asphaltene instability and deposition at the upstructure contact between the condensate and black oil, and the motion of this contact during condensate charge, explain heavy end deposition in core. Moreover, this process accounts for asphaltene dilution and depletion in the corresponding oil. Downhole fluid analysis (DFA) asphaltene gradients and variations in geochemical markers with seismic imaging clarify likely connectivity in these reservoirs. The geo-scenario provides a benchmark of comparison for all types of reservoir data and readily projects into production concerns. The initial apparent puzzles of this oil field have been resolved with a robust understanding of the corresponding reservoirs and development strategies.

Publisher

Society of Petrophysicists and Well Log Analysts (SPWLA)

Subject

Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3