Modeling Permeability in Different Carbonate Rock Types

Author:

Dernaika Moustafa R., ,Masalmeh Shehadeh,Mansour Bashar,Al Jallad Osama,Koronfol Safouh, , , ,

Abstract

In carbonate reservoirs, permeability prediction is often difficult due to the influence of various geological variables that control fluid flow. Many attempts have been made to estimate permeability from porosity by using theoretical and empirical equations. The suggested permeability models have been questionable in carbonates due to inherent heterogeneity and complex pore systems. The main objective of this paper is to provide a workflow to improve the use of existing models (e.g., Kozeny, Lucia, and Winland) to predict permeability in carbonate reservoirs. More than 1,000 core plugs were studied from seven different carbonate reservoirs across the Middle East: mainly Cretaceous reservoirs. The plugs were carefully selected to represent a wide range of properties within the cored intervals. The data set available included laboratory-measured helium porosity, gas permeability, thin-section photomicrographs, and high-pressure mercury injection. Rock textures were analyzed in the thin-section photomicrographs and were classified based on their content as grainy, muddy, and mixed. Special attention was given to the diagenesis effects, mainly compaction, cementation, and dissolution. The texture information was plotted in the porosity-permeability domain and was found to produce three distinct porosity-permeability relationships. Each texture gave a unique porosity-permeability trend, where the extent of the trend was controlled by diagenesis. Rock types were defined on each trend by detailed texture analysis and capillary pressure. Three different permeability equations (Kozeny, Winland, and Lucia) were evaluated to study their effectiveness in complex carbonate reservoirs. Both Kozeny and Lucia models honored the geology of the samples and showed similar trends to the porosity-permeability relationships, whereas the Winland model gave different slopes to the experimental data. The prediction of the permeability was improved by using different model parameters per RRT within each texture. This work presents a systematic approach to construct correlations between porosity and permeability in complex carbonate reservoirs. Model parameters (i.e., FZI, RFN, and r35) were suggested within different geological rock types to estimate permeability. Based on the workflow presented in the paper, the predicted permeability was improved to less than a factor of 2 compared to the measured values. Moreover, the same workflow was applied using the data from seven different reservoirs, and the same rock typing scheme was applicable to all the reservoirs. Such work is not abundant in the literature and would serve to improve permeability prediction in heterogeneous carbonate reservoirs, which is one of the main uncertainties in modeling carbonates.

Publisher

Society of Petrophysicists and Well Log Analysts (SPWLA)

Subject

Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3