Real-Time Prediction of Acoustic Velocities While Drilling Vertical Complex Lithology Using AI Technique

Author:

Alsaihati Ahmed, ,Elkatatny Salaheldin,

Abstract

Mechanical rock properties are often determined using sonic log data—compressional velocity (VP) and shear velocity (VS). However, a sonic well log is not always acquired due to deteriorated hole condition (i.e., hole washout), sonic tool failures, especially in high-pressure, high-temperature (HPHT) wells, and relatively high cost. This paper introduces two data-driven models, namely artificial neural network (ANN) and random forest (RF), to estimate VP and VS across different formations that are characterized by deep burial depth and strong heterogeneity. Two types of actual field data were used to develop the models: (i) drilling surface parameters, which include flow rate, standpipe pressure, rotary speed, and surface torque, and (ii) acoustic velocities VP and VS, which were acquired by a conventional sonic log. Well-1 and Well-2 with data points of 6,846 were used to develop the models, while Well-3 with 1,016 data points was used to evaluate the capability of the developed models to generalize on an unseen data set with different statistical behavior. Furthermore, Well-3 was used to compare the accuracy of the developed models with the earliest published correlations in estimating the VS. The results showed that the RF outperformed the optimized ANN in estimating VP and VS in Well-3. The RF predicted the VP with a low average absolute percentage error (AAPE) of 0.9% and correlation of coefficient (R) of 0.87, while the AAPE and R were 6.7 % and 0.45 in the case of ANN. Similarly, the RF estimated the VS with an AAPE of 1.1% and R of 0.85, whereas the ANN predicted the VS with an AAPE of 9.5% and R of 0.40. Furthermore, the RF was the most accurate in determining VS in Well-3 compared to the earliest published correlations.

Publisher

Society of Petrophysicists and Well Log Analysts (SPWLA)

Subject

Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3