Borehole Sonic Data Dispersion Analysis With a Modified Differential-Phase Semblance Method

Author:

Wang Ruijia, ,Coates Richard,Zhao Jiajun, ,

Abstract

Ruijia Wang, Richard Coates, and Jiajun Zhao The sonic wave fields produced by wireline and logging-while-drilling (LWD) monopole, dipole, and quadrupole tools often consist of multiple borehole modes. Classic frequency-slowness semblance-map methods used to process this data often detect only strongly excited modes and overlook weak ones, and erroneously detect some modes. Conventional dispersion processing methods can be separated into two groups: single-mode and multimode extraction algorithms. Single-mode methods are stable but only return one mode, the most energetic one, at each frequency. Single-mode methods include the differential-phase frequency-semblance (DPFS) method and the weighted spectral-semblance method. Multimode methods can return multiple modes at each frequency but may be unstable in some cases. Due to their assumptions about signal models, multimode methods are often sensitive to unbalanced receiver arrays, poor data quality, and formation heterogeneity. For example, in some extreme cases, such as a formation with strong heterogeneity, multimode methods may yield erroneous ghost modes or discontinuous dispersion curves for each mode. Borehole modes with different slowness have different arrival times. Converting the data to the frequency domain can obscure this critical information or encode these time differences into phase differences between adjacent frequencies. Conventional frequency-semblance approaches, which use only a single frequency independently from adjacent ones, ignore this phase information. In this paper, we propose employing the phase differences between adjacent frequencies to facilitate multimode dispersion analysis. We modify one conventional method to incorporate the arrival time of modes or the phase difference between adjacent frequencies. We validate the proposed approach with synthetic, laboratory, and field data. The results suggest the method can extract a much more comprehensive representation of modes present in the sonic data. Additionally, the method provides reliable estimates, even when the number of receivers is small. Unlike the Prony and matrix-pencil methods based on assumed signal models, the proposed approach, which we denote “Modified Differential-Phase Frequency Semblance” (MDPFS), is a modification of the single-mode differential phase approach. The MDPFS is still a semblance-based approach, and as with other semblance-based processing, it is expected to be less sensitive to unbalanced receiver arrays, poor data quality, and formation heterogeneity than other multimode algorithms.

Publisher

Society of Petrophysicists and Well Log Analysts (SPWLA)

Subject

Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3