Sequential Multi-Realization Probabilistic Interpretation of Well Logs and Geological Prediction by a Deep-Learning Method

Author:

Alyaev Sergey, ,Ambrus Adrian,Jahani Nazanin,Elsheikh Ahmed H., , ,

Abstract

The majority of geosteering operations rely on traditional shallow sensing logging tools as sources of information. Many such operations rely on stratigraphic-based steering when the logs from the drilled well are matched to logs from an offset well by modifying the lateral shape of stratigraphy. The match of the logs indicates a plausible interpretation, but due to the scarcity of log data in many situations, this interpretation is not unique. In manual workflows maintaining several likely interpretations is not realistic and in automated workflows, multiple interpretations are seldom used. We describe a deep neural network (DNN) that outputs a selected number of stratigraphic interpretations using a single evaluation of the input log data in two milliseconds. The input data defined prior to training consists of one or several log pairs consisting of one current lateral and one offset-well log. For each of the interpretations, the DNN also estimates the respective probability and can be configured to produce likely ahead-of-data predictions of the geology, which are based on the data mismatches and the likelihood of geological configurations with respect to the training dataset. The described probabilistic interpretation and prediction is enabled by the supervised training of a mixture density DNN (MDN) with a stable multiple-trajectory-prediction loss function. In this paper, we apply the MDN for the sequential interpretation of well logs. We use the interpretations and the probabilities from the previous interpretation step as starting points for the probabilistic interpretations and predictions for the current step. We avoid the curse of dimensionality by discarding the unlikely starting points. The batchable MDN evaluation enables tracking of hundreds of solutions while still maintaining sub-second performance, compared to minute(s) reported in other recent papers. The performance of the method is verified on synthetic test data as well as the realistic well data from the Geosteering World Cup 2020 (based on the Middle Woodford formation, located in the South Central Oklahoma Oil Province in the United States) and stratigraphic configurations provided by geologists. In all cases, the method manages to capture likely interpretations. At the same time, the accuracy of predictions deteriorates for the configurations which were not typical for the training dataset.

Publisher

Society of Petrophysicists and Well Log Analysts

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3