RV/RH ANISOTROPY IN UNCONVENTIONAL FORMATIONS: RESOLVING THE RIDDLE OF RESISTIVITY

Author:

Barry Andrew, ,Haecker Adam,Misra Siddharth, ,

Abstract

The problem of capricious log response is one that has persistently troubled formation evaluation experts since the Schlumberger brothers ran their first log in Pechelbronn, France. Since the advent of 6FF40 induction logs in the 1950’s, subtle differences have been noted between laterolog and induction response. As field resistivity measurements have evolved to array induction and array laterolog tools, resultant resistivity variability has increased. (Gianzero, 1999) This paper examines how the resistivity discrepancies between laterolog and induction response in an electrically anisotropic rock can greatly affect calculated water saturations (Sw), and ultimately oil in place. Further, several possible solutions are posited to resolve the riddle of resistivity. The root cause of the differences between the two measurement techniques is in how each tool measures the vertical resistivity (Rv) and horizontal resistivity (Rh) in addition to dielectric effects. In isotropic formations, the difference between Rv and Rh is miniscule. However most organic shales and many laminated low porosity formations are anisotropic. (Klein et al., 1997) In anisotropic formations, the ratio of Rv/Rh is not constant over the possible range of resistivities. This ratio has been observed to be as high as 5 at less than 1 ohmm of Rh, and approaches unity at infinite resistivity. Due to the high Rv/Rh ratio, at low resistivities, differences between laterolog response (Rh + fraction of Rv) and induction response (Rh) has a dramatic impact on resultant water saturation values. Laterolog array measurements exhibit a systematically higher resistivity than array induction measurements in the same formation. Variances in Sw as high as 30% has been observed. Since most North American unconventional fields have a mix of historical laterolog and induction data from different eras, it is imperative to address this apparent contradiction in values. Further confounding the issue, the mud salinity required to run both tools at peak performance is nearly mutually exclusive. This complicates efforts to resolve the conundrum because the tools cannot be run simultaneously. The closest measurements on the same rock come from sidetracked wells where one has a laterolog and the other induction. The next best possible measurement is the tri-axial resistivity which can be used to model the Rv and Rh. The issue with tri-axial tools, is that the laterolog apparent resistivity does not conform to either end member of the Rv or Rh. Since the detailed field measurements have been lost to time and only the measured resistivities are available in public LAS data sets, several practical solutions have been devised by the authors to untangle this mess. First, sets of proximal wells (<1000 ft apart) with either tool were depth-shifted and oriented for analysis. Wells with tri-axial resistivity modeled Rv and Rh supplemented the data set. Once the data was collected, the authors utilized simple x-y regression, multilinear regression, artificial neural net, and random forest regression to predict true Rh. The results of each predictor algorithm is discussed, as the optimal solution is situationally dependent.

Publisher

Society of Petrophysicists and Well Log Analysts

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3