Angle-Dependent Ultrasonic Wave Reflection for Estimating High-Resolution Elastic Properties of Complex Rock Samples

Author:

Olszowska Daria, ,Gallardo-Giozza Gabriel,Crisafulli Domenico,Torres-Verdín Carlos, , ,

Abstract

Due to depositional, diagenetic, and structural processes, reservoir rocks are rarely homogeneous, often exhibiting significant short-range variations in elastic properties. Such spatial variability can have measurable effects on macroscopic mechanical properties for drilling and fluid production operations. We describe a new laboratory method for the acquisition of ultrasonic angle-dependent measurements of reflected waves that delivers high-resolution, continuous descriptions of P- and S-wave velocity along the surface of the rock sample. Reflection coefficient vs. incidence angle is the main source of information about rock elastic properties. The acquired measurements are matched to numerical simulations to estimate P- and S-wave velocity and density of the porous sample and their variations within the rock specimen, hence providing continuous descriptions of sample complexity. Data collected from various locations on the rock specimen are subsequently used to construct two-dimensional (2D) models of elastic properties along the surface of the rock sample. P- and S-wave velocities estimated with this method agree well with acoustic transmission measurements for most homogeneous rocks. The spatial resolution of the method is limited by receiver size, measurement frequency, and incidence angle. At high incidence angles, the surface area sensitive to the measurements increases, and consequently, the spatial resolution of the corresponding reflection coefficient decreases across neighboring rock features.

Publisher

Society of Petrophysicists and Well Log Analysts (SPWLA)

Subject

Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3